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I’m going to talk about some work I’ve done with John Duncan over the
past couple years. I’ll begin with an overview of moonshine and then get into
what we’ve done.

Moonshine refers to a number of amazing connections between the repre-
sentation theory of finite groups and modular functions; this is a neat thing
because these two fields are a priori quite unrelated, so the deep connection in
moonshine suggests an underlying structure that is not yet understood.

What is this mysterious connection? There are many examples of moon-
shine, but I’ll focus on one particular example: Conway moonshine. I said that
moonshine consists of connections between finite groups and modular functions;
the finite group in this case is Conway’s group Co0, the automorphism group of
a special 24-dimensional lattice known as the Leech lattice.

Co0 is a rather large finite group, weighing in at

8 315 553 613 086 720 000 (1)

(over 8 quintillion) elements; it has 167 irreducible representations, whose di-
mensions are

1, 24, 276, 299, 1771, 2024, 2576, 4576, 8855, . . . . (2)

To understand the modular functions in this example, another bit of back-
ground. The upper half plane

H = {τ ∈ C | Im(τ) > 0} (3)

equipped with the metric

ds2 =
dx2 + dy2

y2
(4)

is a model of the hyperbolic plane, and the group of (orientation-preserving)
isometries of this hyperbolic plane is SL2 R acting by linear fractional transfor-
mations (

a b
c d

)
· τ =

aτ + b

cτ + d
. (5)
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Given a discrete subgroup Γ < SL2 R we can form the orbit space Γ\H,
a complex surface, and by adding finitely many points we obtain a compact
surface Γ\Ĥ. Meromorphic functions on Γ\Ĥ are called modular functions for
Γ. Equivalently, modular functions for Γ are meromorphic functions f : H→ C
that satisfy the transformation

f

(
aτ + b

cτ + d

)
= f(τ) for all

(
a b
c d

)
∈ Γ (6)

(a function on H descends to the quotient Γ\H exactly when it is invariant under

the action of Γ, cf. (5)). If Γ contains

(
1 1
0 1

)
, the transformation τ 7→ τ + 1,

then (6) implies f(τ + 1) = f(τ) and therefore f has a Fourier series in terms
of q = e2πiτ .

f(τ) =
∑
n≥N

anq
n (q = e2πiτ ) (7)

Define the genus of a subgroup Γ < SL2 R to be the genus of Γ\Ĥ. It is a

fact that the field of meromorphic functions on Γ\Ĥ, i.e. the field of modular
functions for Γ, is generated by a single element exactly when the genus of
Γ\Ĥ is 0 (i.e. Γ has genus 0). In this case, such a generator of the field of
modular functions for Γ is called a principal modulus for Γ (or Hauptmodul).
This generator is not unique, for we can scale it or add constants as we please; if
we impose the normalization condition q−1 + 0 +O(q) on its Fourier expansion,
then it is unique, and we call it a normalized principal modulus.

Let’s look at an example. The subgroup Γ0(2) < SL2 R consists of integer
matrices of determinant 1 which are upper triangular mod 2.

Γ0(2) =

{(
a b
2c d

)∣∣∣∣ a, b, c, d ∈ Z, ad− 2bc = 1

}
(8)

This is a genus 0 group, and its normalized principal modulus is given by the
Fourier expansion

f(τ) = q−1 − 0 + 276q − 2048q2 + 11202q3 − · · · (9)

(recall q = e2πiτ ). If you were paying very close attention earlier, these numbers
may seem familiar; they are nearly the dimensions of irreducible representations
of Co0. In fact,

1 = 1

276 = 276

2048 = 2024 + 24

11202 = 8855 + 2024 + 299 + 24,

Check this!

(10)

where the numbers on the left are coefficients of f and the numbers on the right
are dimensions of irreducible representations of Co0. You’ve probably seen the
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famous equation 196884 = 1 + 196883, and these are the analogs for Conway
moonshine.

If we extrapolate from these observations, we may guess that each coeffi-
cient of f is the dimension of a representation Vi of Co0. We can gather these
representations in a direct sum to obtain a graded representation

V =
⊕
i≥−1

Vi (11)

whose graded dimension

dimV =
∑
i≥−1

dimVi q
i (12)

is f . The existence of such a representation would explain, in some sense, why
the dimensions of representations of Co0 appear in the Fourier coefficients of f .

We can go further. When one is confronted with a representation it is natural
to ask about its character, i.e. the traces of group elements in the representation;
or in our case graded traces

trV g =
∑
i≥−1

trVi
g qi (13)

for each group element g.
Note that the graded trace of the identity is simply the graded dimension

(because the trace of the identity is the dimension of the space), and this graded
trace is a very special function: the (normalized) principal modulus for the
genus 0 group Γ0(2). Using the guesses for decompositions into irreducible
representations aboce, we can compute the first few terms of the graded trace
of each Co0 element. If we do this then, amazingly, it appears that the graded
characters of all elements of Co0 are (normalized) principal moduli for genus
0 subgroups of SL2 R. This is the main content of Conway moonshine, the
relationship between representations of Co0 and (normalized) principal moduli
of genus 0 groups.

But so far this is all speculation. We would like to prove that the repre-
sentation V exists, and that all graded characters are indeed principal moduli
of genus 0 groups. The best way to do this is to construct it explicitly (and
find expressions for the graded traces). Even more, we would like a “concep-
tual understanding”, whatever that will turn out to mean, of the connection
between our finite group and principal moduli. To have any hope of this, the
representation we construct must be more than a vector space; it must have
some additional structure.

The way moonshine is developing, “additional structure” seems to mean the
structure of a “vertex algebra”. A vertex algebra, very roughly, is a vetor space
with a multiplication operation that lands not back in the vector space, but in
the space of formal Laurent series over the vector space.

V ⊗ V → V ((z)) (14)
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An important fact about vertex algebras is that they arose from quantum the-
ory, and they can be used to model certain quantum systems. This connects
moonshine with physics, and I’ll say more about that later. But I should men-
tion at this point that a “conceptual explanation” of moonshine of the type I
referred to above is still missing.

The main result that I wanted to tell you about today is the construction of
the vertex algebra, which we call V s\, that furnishes the representation linking
Conway’s group to the principal moduli associated by moonshine. I won’t go
into much detail in the actual construction; the important thing I want to
convey is that it’s simple. The reason this is important is the hope that Conway
moonshine can serve as a sort of stepping-stone to monstrous moonshine, where
the corresponding construction is quite complicated.

There is a standard method of producing a vertex algebra from a (finite-
dimensional complex) vector space (equipped with a (non-degenerate symmet-
ric) bilinear form), via Clifford algebras. Apply this construction to a 24-
dimensional space a to obtain a vertex algebra A(a). In fact we obtain a super
vertex algebra, meaning that it decomposes into even and odd subspaces.

A(a) = A(a)0 ⊕A(a)1 (15)

This vertex has a canonical vertex algebra module (obtained by a similar Clifford
algebra construction) with a similar decomposition

A(a)tw = A(a)0tw ⊕A(a)1tw. (16)

Using the module structure and certain facts about vertex algebra, we can give
a vertex algebra structure to A(a)0 ⊕A(a)1tw; this completes our construction.

V s\ = A(a)0 ⊕A(a)1tw (17)

The construction of this representation realizing the moonshine phenomenon
between Conway’s group and principal moduli of genus 0 groups is an important
step toward a conceptual understanding of moonshine.

Very quickly I want to mention a neat application to physics of this con-
struction. The vertex algebra V s\ has a canonical vertex algebra module V s\tw(=
A(a)1 ⊕ A(a)0tw) which also receives an action from Conway’s group. Very re-
cently Gaberdiel–Hohenegger–Volpato showed that a particular class of quan-
tum field theories, viz. K3 sigma models, all have automorphism group a sub-
group of Co0. Now such a quantum field theory has an important piece of data
called its elliptic genus, a sort of partition function, and this elliptic genus can
be “twined” by a symmetry of the field theory to produce a twined elliptic genus
that encodes important data about the field theory. The amazing thing is that
the graded characters of Co0 elements acting on V s\tw appear to be exactly the
twined elliptic genera of this class of field theories, K3 sigma models. But all
that will need it’s own talk.

Thanks for listening!
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